Explore Scalers
Use events from Apache Kafka to trigger autoscaling with Kedify and KEDA
Apache Kafka is a distributed streaming platform that lets you publish, subscribe to, and process streams in real-time
Book demoIt's designed for high throughput and scalability, it is ideal for handling data feeds with high velocity and volume in fault-tolerant ways across distributed systems or applications.
Featured Use Cases
Scenario:
Organizations must process logs to ensure compliance with data protection regulations. These logs require specific handling or transformation, such as anonymization or encryption, at regular intervals.
Apache Kafka Scaler Usage:
Kafka collects and stores logs from various systems, aggregating them for compliance checks and transformations.
KEDA Usage:
KEDA triggers batch jobs to process sensitive log data, using Kafka lag to determine when to scale up processing capabilities. This ensures that logs are processed in compliance with legal time frames.
Get Started
apiVersion: keda.sh/v1alpha1
kind: ScaledJob
metadata:
name: compliance-log-processing-job
namespace: default
spec:
jobTargetRef:
template:
spec:
containers:
- name: log-compliance-processor
image: compliance-processor:latest
restartPolicy: Never
pollingInterval: 600 # Every 10 minutes
successfulJobsHistoryLimit: 2
failedJobsHistoryLimit: 3
maxReplicaCount: 5
triggers:
- type: kafka
metadata:
bootstrapServers: kafka.svc:9092
consumerGroup: compliance-log-group
topic: compliance-log-topic
lagThreshold: '50'